因式分解方法有几种-因式分解四原则-因式分解分解步骤技巧宜城教育资源网手机版
因式分解方法有几种-因式分解四原则-因式分解分解步骤技巧宜城教育资源网手机版

一、因式分解步骤

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”

因式分解方法有几种 

二、分解因式技巧掌握:

①分解因式是多项式的恒等变形,要求等式左边必须是多项式

②分解因式的结果必须是以乘积的形式表示

③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数

④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

三、分解因式主要方法:

1.提取公因式法:

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

提公因式法基本步骤:

1)找出公因式

2)提公因式并确定另一个因式:

①第一步找公因式可按照确定公因式的方法先确定系数再确定字母

②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式

③提完公因式后,另一因式的项数与原多项式的项数相同。

2.公式法:

把乘法公式的平方差公式和完全平方公式反过来,得到因式分解的公式:

平方差公式:a2-b2=a+b)·(a-b);

完全平方式:a2±2ab+b2=a±b2

3.分组分解法:

利用分组分解因式的方法叫做分组分解法,ac+ad+bc+bd=a·(c+d+b·(c+d=a+b)·(c+d

其原则:

①连续提取公因式法:分组后每组能够分解因式,每组分解因式后,组与组之间又有公因式可提。

②分组后直接运用公式法:分组后各组内可以直接应用公式,各组分解因式后,使组与组之间构成公式的形式,然后用公式法分解因式。

4.十字相乘法:a2+p+q)·a+p·q=a+p)·(a+q)。

 

5.解方程法:

通过解方程来进行因式分解,如

x2+2x+1=0 ,解,得x1=-1x2=-1,就得到原式=x+1)×(x+1

6.待定系数法:

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

:分解因式x -x -5x -6x-4

分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x -x -5x -6x-4

=(x +ax+b)(x +cx+d)

= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd

所以 解得 a=1,b=1,c=-2,d=-4

x -x -5x -6x-4 =(x +x+1)(x -2x-4)

四、因式分解注意四原则:

1.分解要彻底(是否有公因式,是否可用公式)

2.最后结果只有小括号

3.最后结果中多项式首项系数为正(例如:)不一定首项一定为正。

五、因式分解中的四个注意

①首项有负常提负,

②各项有“公”先提“公”,

③某项提出莫漏1

④括号里面分到“底”。

现举下例,可供参考。

例:

-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4

=-(a2-2ab+b2-4

=-[(a-b)2-4]

=-(a-b+2)(a-b-2)

这里的“负”,指“负号”。

如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的;

这里的“公”指“公因式”。

如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1

分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。

其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。

在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!

由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。


整式乘法的运算法则是什么-单项式乘以单项式法则-

整式的加减步骤法则-整式的乘除知识点总结